Problem
Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows: the nodes are 0, 1, ..., graph.length - 1. graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []] Output: [[0,1,3],[0,2,3]] Explanation: The graph looks like this:0--->1| |v v2--->3There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
The number of nodes in the graph will be in the range [2, 15].
You can print different paths in any order, but you should keep the order of nodes inside one path.Solution - DFS
class Solution { public List
> allPathsSourceTarget(int[][] graph) { List
> res = new ArrayList<>(); List temp = new ArrayList<>(); int firstNode = 0; temp.add(firstNode); dfs(graph, firstNode, temp, res); return res; } private void dfs(int[][] graph, int node, List temp, List
> res) { if (node == graph.length-1) { res.add(new ArrayList<>(temp)); return; } for (int neighbor: graph[node]) { temp.add(neighbor); dfs(graph, neighbor, temp, res); temp.remove(temp.size()-1); } }}
Solution - BFS
class Solution { public List
> allPathsSourceTarget(int[][] graph) { int n = graph.length; List
> res = new ArrayList<>(); Deque
> queue = new ArrayDeque<>(); queue.offer(Arrays.asList(0)); while (!queue.isEmpty()) { List cur = queue.poll(); int size = cur.size(); if (cur.get(size-1) == n-1) { res.add(cur); continue; } for (int node: graph[cur.get(size-1)]) { List next = new ArrayList<>(cur); next.add(node); queue.offer(next); } } return res; }}